skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sokolov, Dmitry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In bulk Sr 2 RuO 4 , the strong sensitivity of the superconducting transition temperature T c to nonmagnetic impurities provides robust evidence for a superconducting order parameter that changes sign around the Fermi surface. In superconducting epitaxial thin-film Sr 2 RuO 4 , the relationship between T c and the residual resistivity ρ 0 , which in bulk samples is taken to be a proxy for the low-temperature elastic scattering rate, is far less clear. Using high-energy electron irradiation to controllably introduce point disorder into bulk single-crystal and thin-film Sr 2 RuO 4 , we show that T c is suppressed in both systems at nearly identical rates. This suggests that part of ρ 0 in films comes from defects that do not contribute to superconducting pairbreaking and establishes a quantitative link between the superconductivity of bulk and thin-film samples. Published by the American Physical Society2024 
    more » « less
  2. Abstract One of the main developments in unconventional superconductivity in the past two decades has been the discovery that most unconventional superconductors form phase diagrams that also contain other strongly correlated states. Many systems of interest are therefore close to more than one instability, and tuning between the resultant ordered phases is the subject of intense research 1 . In recent years, uniaxial pressure applied using piezoelectric-based devices has been shown to be a particularly versatile new method of tuning 2,3 , leading to experiments that have advanced our understanding of the fascinating unconventional superconductor Sr 2 RuO 4 (refs.  4–9 ). Here we map out its phase diagram using high-precision measurements of the elastocaloric effect in what we believe to be the first such study including both the normal and the superconducting states. We observe a strong entropy quench on entering the superconducting state, in excellent agreement with a model calculation for pairing at the Van Hove point, and obtain a quantitative estimate of the entropy change associated with entry to a magnetic state that is observed in proximity to the superconductivity. The phase diagram is intriguing both for its similarity to those seen in other families of unconventional superconductors and for extra features unique, so far, to Sr 2 RuO 4 . 
    more » « less
  3. Unambiguous identification of the superconducting order parameter symmetry in Sr 2 RuO 4 has remained elusive for more than a quarter century. While a chiral p-wave ground state analogue to superfluid3He-A was ruled out only very recently, other proposed triplet-pairing scenarios are still viable. Establishing the condensate magnetic susceptibility reveals a sharp distinction between even-parity (singlet) and odd-parity (triplet) pairing since the superconducting condensate is magnetically polarizable only in the latter case. Here field-dependent17O Knight shift measurements, being sensitive to the spin polarization, are compared to previously reported specific heat measurements for the purpose of distinguishing the condensate contribution from that due to quasiparticles. We conclude that the shift results can be accounted for entirely by the expected field-induced quasiparticle response. An upper bound for the condensate magnetic response of <10% of the normal state susceptibility is sufficient to exclude all purely odd-parity candidates. 
    more » « less
  4. We introduce a new technique for reducing the dimension of the ambient space of low-degree polynomials in the Gaussian space while preserving their relative correlation structure. As an application, we obtain an explicit upper bound on the dimension of an epsilon-optimal noise-stable Gaussian partition. In fact, we address the more general problem of upper bounding the number of samples needed to epsilon-approximate any joint distribution that can be non-interactively simulated from a correlated Gaussian source. Our results significantly improve (from Ackermann-like to "merely" exponential) the upper bounds recently proved on the above problems by De, Mossel & Neeman [CCC 2017, SODA 2018 resp.] and imply decidability of the larger alphabet case of the gap non-interactive simulation problem posed by Ghazi, Kamath & Sudan [FOCS 2016]. Our technique of dimension reduction for low-degree polynomials is simple and can be seen as a generalization of the Johnson-Lindenstrauss lemma and could be of independent interest. 
    more » « less